
Distributed Memory Breadth-First Search Revisited:
Enabling Bottom-Up Search

Scott Beamer
EECS Department

University of California
Berkeley, California

Aydın Buluç
Computational Research Division

Laurence Berkeley National Laboratory
Berkeley, California

Krste Asanović David Patterson
EECS Department

University of California
Berkeley, California

Abstract—Breadth-first search (BFS) is a fundamental graph
primitive frequently used as a building block for many complex
graph algorithms. In the worst case, the complexity of BFS is
linear in the number of edges and vertices, and the conventional
top-down approach always takes as much time as the worst case.
A recently discovered bottom-up approach manages to cut down
the complexity all the way to the number of vertices in the best
case, which is typically at least an order of magnitude less than
the number of edges. The bottom-up approach is not always
advantageous, so it is combined with the top-down approach
to make the direction-optimizing algorithm which adaptively
switches from top-down to bottom-up as the frontier expands.
We present a scalable distributed-memory parallelization of this
challenging algorithm and show up to an order of magnitude
speedups compared to an earlier purely top-down code. Our
approach also uses a 2D decomposition of the graph that has
previously been shown to be superior to a 1D decomposition.
Using the default parameters of the Graph500 benchmark, our
new algorithm achieves a performance rate of over 240 billion
edges per second on 115 thousand cores of a Cray XE6, which
makes it over 7× faster than a conventional top-down algorithm
using the same set of optimizations and data distribution.

I. INTRODUCTION

Breadth-first search (BFS) is a fundamental graph traversal
technique that serves as a building block for many graph
algorithms. Parallel graph algorithms increasingly rely on
BFS as the alternative graph traversal approach, since depth-
first search is inherently sequential. The fastest parallel graph
algorithms often use BFS even for cases when the optimal
sequential algorithm for solving the same problem relies
on depth-first search, such as identifying strongly connected
components [1] [2].

Given a distinguished source vertex s, BFS systematically
explores the graph G to discover every vertex that is reachable
from s. In the worst case, BFS has to explore all of the edges in
the connected component in order to reach every vertex in the
connected component. A simple level-synchronous traversal
that explores all of the outgoing edges of the current frontier
(the set of vertices discovered in this level) is therefore consid-
ered optimal in the worst-case analysis. This level-synchronous
algorithm exposes lots of parallelism for low-diameter small-
world graphs [3]. Many real-world graphs, such as those
representing social interactions and brain anatomy [4], are
small-world.

This level-synchronous algorithm (henceforth called top-
down) is overly pessimistic and can be wasteful in practice,
because it always does as many operations as the worst-case.
Suppose that a vertex v is d hops away from the source and
is reachable by x vertices, x′ ≤ x of which are d − 1 hops
away from the source. In other words, each one of those x′

vertices can potentially be the parent of v. In theory, only
one of those x′ incoming edges of v needs to be explored,
but the top-down algorithm is unable to exploit this and does
x′−1 extra checks. By contrast, v would quickly find a parent
by checking its incoming edges if a significant number of
its neighbors are reachable in d − 1 of hops of the source.
The direction-optimizing BFS algorithm [5] uses this intuition
to significantly outperform the top-down algorithm because
it reduces the number of edge examinations by integrating a
bottom-up algorithm into its search.

Implementing this bottom-up search strategy on distributed
memory poses multiple challenges. First, the bottom-up ap-
proach needs fast frontier membership tests to find a neighbor
in the frontier, but the frontier is far too large to replicate in
each processor’s memory. Second, each vertex’s search for
a parent must be sequentialized in order to skip checking
unnecessary edges once a parent is found. If a vertex’s search
for a parent is fully parallelized, there is potential the search
will not terminate as soon as a parent is found, resulting
in redundant work that could nullify any performance gains.
We tackle the first challenge by adapting the two-dimensional
graph partitioning approach that reduces the amount of the
frontier that needs to be locally replicated for each processor.
We tackle the second challenge by using systolic shifts that
provide a good compromise between work and parallelism.
In this paper we introduce a distributed memory parallel
algorithm for bottom-up search.

The primary contributions of this article are:
• A novel distributed-memory parallel algorithm for the

bottom-up BFS using a two-dimensional decomposition.
• Demonstration of excellent weak scaling on up to 115,000

cores of a Cray XE6, and 6.5−7.9× performance increase
over the top-down algorithm.

• Careful analysis of the communication costs in our new
algorithm, which highlights the reduction in the amount
of data communicated compared to the top-down algo-
rithm.

The technical heart of our paper is Section IV where
we present the distributed memory parallelization of our 2D
bottom-up algorithm, its parallel complexity analysis, and im-
plementation detail. To yield a fast direction-optimizing BFS
implementation, our bottom-up implementation is combined
with an existing performant top-down implementation [6]. We
provide a parallel complexity analysis of the new algorithm
in terms of the bandwidth and synchronization (latency) costs
in Section V. Section VI gives details about our direction-
optimizing approach that combines top-down and bottom-up
steps. Our extensive large scale experiments on Cray XK6 and
Cray XE6 machines are in Section VIII.

II. BREADTH-FIRST SEARCH

Before delving into the details of implementing our parallel
algorithm, we review sequential versions of the top-down and
bottom-up BFS algorithms. The level-synchronous top-down
BFS can be implemented sequentially using a queue, as shown
in Algorithm 1. The algorithm outputs an implicit “breadth-
first spanning tree” rooted at s by maintaining parents for each
vertex. The parent of a vertex v who is d hops away from the
root, can be any of the vertices that are both d− 1 hops away
from the root and have an outgoing edge to v. This algorithm
is optimal in the worst case, running in time proportional to
Θ(n + m) where n = |V | is the number of vertices and
m = |E| is the number of edges of a graph G = (V,E).
However, its best case performance is no better than its worst
case performance, and it may do many edge examinations that
are redundant because the vertex has already been examined
by the breadth-first search.

The key insight the bottom-up approach leverages is that
most edge examinations are unsuccessful because the end-
points have already been visited. In the conventional top-
down approach, during each step, every vertex in the frontier
examines all of its neighbors and claims the unvisited ones as
children and adds them to the next frontier. On a low-diameter
graph when the frontier is at its largest, most neighbors of the
frontier have already been explored (many of which are within
the frontier), but the top-down approach must check every edge
in case the neighbor’s only legal parent is in the frontier. The
bottom-up approach passes this responsibility from the parents
to the children (Algorithm 2).

During each step of the bottom-up approach, every unvisited
vertex (parent[u] = −1) checks its neighbors to see if any of
them are in the frontier. If they are, they are a valid parent and
the neighbor examinations (line 6 – line 10) can end early. This
early termination sequentializes the inner loop in order to get
the savings from stopping as soon as a valid parent is found.
In general, the bottom-up approach is only advantageous when
the frontier constitutes a substantial fraction of the graph.
Thus, a performant BFS will use the top-down approach for the
beginning and end of the search and the bottom-up approach
for the middle steps when the frontier is at its largest. Since the
BFS for each step is done in whichever direction will require
the least work, it is a direction-optimizing BFS.

Algorithm 1 Sequential top-down BFS algorithm
Input: G(V,E), source vertex s
Output: parent [1..n], where parent [v] gives the parent of

v ∈ V in the BFS tree or −1 if it is unreachable from s
1: parent [:]← −1, parent [s]← s
2: frontier ← {s}, next ← φ
3: while frontier 6= φ do
4: for each u in frontier do
5: for each neighbor v of u do
6: if parent [v] = −1 then
7: next ← next ∪{v}
8: parent [v]← u

9: frontier ← next , next ← φ

Algorithm 2 Sequential bottom-up BFS algorithm
Input: G(V,E), source vertex s
Output: parent [1..n], where parent [v] gives the parent of

v ∈ V in the BFS tree or −1 if it is unreachable from s
1: parent [:]← −1, parent [s]← s
2: frontier ← {s}, next ← φ
3: while frontier 6= φ do
4: for each u in V do
5: if parent [u] = −1 then
6: for each neighbor v of u do
7: if v in frontier then
8: next ← next ∪{u}
9: parent [u]← v

10: break
11: frontier ← next , next ← φ

III. PARALLEL TOP-DOWN BFS

Data distribution plays a critical role in parallelizing BFS
on distributed-memory machines. The approach of partitioning
vertices to individual processors (along with their outgoing
edges) is the so-called 1D partitioning. By contrast, 2D par-
titioning assigns vertices to groups of processors (along with
their outgoing edges), which are further assigned to members
of the group. 2D checkerboard partitioning assumes the sparse
adjacency matrix of the graph is partitioned as follows:

A =

 A1,1 . . . A1,pc

...
. . .

...
Apr,1 . . . Apr,pc

 (1)

Processors are logically organized in a square p = pr × pc
mesh, indexed by their row and column indices. Submatrix
Aij is assigned to processor P (i, j). The nonzeros in the ith
row of the sparse adjacency matrix A represent the outgoing
edges of the ith vertex of G, and the nonzeros in the jth
column of A represent the incoming edges of the jth vertex.
Our top-down algorithm actually operates on the transpose of
this matrix, but we will omit the transpose and assume that
the input is pre-transposed for the rest of this section.

Algorithm 3 Parallel 2D top-down BFS algorithm (adapted
from the linear algebraic algorithm [6])
Input: A: graph represented by a boolean sparse adjacency

matrix, s: source vertex id
Output: π: dense vector, where π[v] is the predecessor vertex

on the shortest path from s to v, or −1 if v is unreachable
1: π(:)← −1, π(s)← s
2: f(s)← s . f is the current frontier
3: for all processors P (i, j) in parallel do
4: while f 6= ∅ do
5: TRANSPOSEVECTOR(fij)
6: fi ← ALLGATHERV(fij , P (:, j))
7: ti ← ∅ . t is candidate parents
8: for each fi(u) 6= 0 do . u is in the frontier
9: adj (u)← INDICES(Aij(:, u))

10: ti ← ti ∪ PAIR(adj (u), u)
11: tij ← ALLTOALLV(ti, P (i, :))
12: for (v, u) in tij do
13: if πij(v) 6= −1 then . Set parent if new
14: πij(v)← u
15: fij(v)← v
16: else . Remove if discovered before
17: tij ← tij \ (u, v)

The pseudocode for parallel top-down BFS algorithm with
2D partitioning is given in Algorithm 3 for completeness. Both
f and t are implemented as sparse vectors. For distributed
vectors, the syntax vij denotes the local n/p sized piece of the
vector owned by the P (i, j)th processor. The syntax vi denotes
the hypothetical n/pr sized piece of the vector collectively
owned by all the processors along the ith processor row P (i, :).
The algorithm has four major steps:
• Expand: Construct the current frontier of vertices on

each processor by a collective allgather step along the
processor column (line 6).

• Local discovery: Inspect adjacencies of vertices in
the current frontier and locally merge them(line 8). The
operation is actually a sparse matrix-sparse vector multi-
plication on a special semiring where each scalar multiply
returns the second operand and each scalar addition
returns the minimum.

• Fold: Exchange newly-discovered adjacencies using a
collective alltoallv step along the processor row (line 11).
This step optionally merges updates from multiple pro-
cessors to the same vertex using the first pair entry (the
discovered vertex id) as the key.

• Local update: Update distances/parents for unvisited
vertices (line 12). The new frontier is composed of any
entries that was not removed from the candidate parents.

In contrast to the 1D case, communication in the 2D
algorithm happens only along one processor dimension. If
Expand happens along one processor dimension, then Fold
happens along the other processor dimension. Both 1D and 2D
algorithms can be enhanced by in-node multithreading, result-

ing in one MPI process per chip instead of one MPI process per
core, which will reduce the number of communicating parties.
Large scale experiments of 1D versus 2D show that the 2D
approach’s communication costs are lower than the respective
1D approach’s, with or without in-node multithreading [6].
The study also shows that in-node multithreading gives a
further performance boost by decreasing network contention.

IV. PARALLEL BOTTOM-UP BFS

Implementing a bottom-up BFS on a cluster with distributed
memory introduces some challenges that are not present in
the shared memory case. The speedup from the algorithm
is dependent on fast membership tests for the frontier and
sequentializing the inner loop. On a single compute node, the
fast (constant time) membership tests for the frontier can be
efficiently implemented with a bitmap that often fits in the last
level of cache. Sequentializing the inner loop is trivial since
the outer loop can still provide sufficient parallelism to achieve
good multicore performance.

A performant distributed implementation must have fast
membership tests for the frontier which necessitates it being
able to determine if a vertex is in the frontier without crossing
the network. Holding the entire frontier in each processor’s
memory is clearly unscalable. Fortunately, the 2D decompo-
sition [6] [7] greatly aids this, since for each processor, only
a small subset of vertices can be the sources of a processor’s
incoming edges. This subset is small enough that it can fit in a
processor’s memory, and the frontier can be represented with
a dense vector for constant time access. The dense format
does not necessarily consume more memory than a sparse
vector, because it can be compressed by using a bitmap and
the frontier is typically a large fraction of the graph during the
bottom-up steps.

Although the 2D decomposition helps with providing fast
frontier checks, it complicates sequentializing the inner loop.
Since all of the edges for a given vertex are spread across
multiple processors, the examination of a vertex’s neighbors
will be done in parallel. If the inner loop is not sequentialized,
the bottom-up approach’s advantage of terminating the inner
loop early once a parent is found will be hard to maintain.
Unnecessary edges could be examined during the time it takes
for the termination message to propagate across the network.

To sequentialize the inner loop of checking if neighbors are
in the frontier, we propose partitioning the work temporally
(Figure 1). We break down the search step into pc sub-steps,
and during each sub-step, a given vertex’s edges will be exam-
ined by only one processor. During each sub-step, a processor
processes (1/pc)th of the vertices in that processor row. After
each sub-step, it passes on the responsibility for those vertices
to the processor to its right and accepts new vertices from
the processor to its left. This pairwise communication sends
which vertices have been completed (found parents), so the
next processor knows to skip over them. This has the effect
of the processor responsible for processing a vertex rotating
right along the row each sub-step. When a vertex finds a valid
parent to become visited, its index along with its discovered

from
pi,j-1

to
pi,j+2

c Ai,j Ai,j+1

c

Fig. 1. Sub-step for processors pi,j and pi,j+1. They initially use their
segment of completed (c) to filter which vertices to process from the shaded
region and update completed for each discovery. At the end of the sub-
step, the completed segments rotate to the right. The parent updates are also
transmitted at the end of the sub-step (not shown).

parent is queued up and sent to the processor responsible for
the corresponding segment of the parent array to update it.

Algorithm 4 Parallel 2D bottom-up BFS algorithm
Input: A: graph represented by a boolean sparse adjacency

matrix, s: source vertex id
Output: π: dense vector, where π[v] is the parent vertex on

the shortest path from s to v, or −1 if v is unreachable
1: f(:)← 0, f(s)← 1 . bitmap for frontier
2: c(:)← 0, c(s)← 1 . bitmap for completed
3: π(:)← −1, π(s)← s
4: while f(:) 6= 0 do
5: for all processors P (i, j) in parallel do
6: TRANSPOSEVECTOR(fij)
7: fi ← ALLGATHERV(fij , P (:, j))
8: for s in 0 . . . pc − 1 do . pc sub-steps
9: t← φ . t holds parent updates

10: for u in Vi,j+s do
11: if cij(u) = 0 then . u is unvisited
12: for each neighbor v of u do
13: if fi(v) = 1 then
14: tij ← tij ∪ {(u, v)}
15: cij(u)← 1
16: break
17: fij(:)← 0
18: wij ← SENDRECV(tij , P (i, j + s), P (i, j − s)))
19: for (u, v) in wij do
20: πij(u)← v
21: fij(u)← 1

22: cij ← SENDRECV(cij , P (i, j + 1), P (i, j − 1)))

The pseudocode for our parallel bottom-up BFS algorithm
with 2D partitioning is given in Algorithm 4 for completeness.
f (frontier) is implemented as a dense bitmap and π (parents)
is implemented as a dense vector of integers. c (completed)
is a dense bitmap and it represents which vertices have found
parents and thus no longer need to search. The temporaries

Approach Words/Search Latencies/Step

Top-Down 4m+ n(pr + 1) O(1)

Bottom-Up n(
sb(pr+pc+1)

64
+ 2) O(pc)

TABLE I
ANALYTIC COMPARISON OF COMMUNICATION COSTS.

t and w are simply queues of updates represented as pairs
of vertices of the form (child, parent). All processor column
indices are modulo pc (the number of processor columns).
For distributed vectors, the syntax fij denotes the local n/p
sized piece of the frontier owned by the P (i, j)th processor.
Likewise, the syntax Vi,j represents the vertices owned by the
P (i, j)th processor. The syntax fj denotes the hypothetical
n/pc sized piece of the frontier collectively owned by all the
processors along the jth processor column P (:, j). Each step
of the algorithm has four major operations:

• Gather frontier (per step) Each processor is given the
segment of the frontier corresponding to their incoming
edges (lines 6 and 7).

• Local discovery (per substep) Search for parents with
the information available locally (line 10 – line 16).

• Update parents (per substep) Send updates of children
that found parents and process updates for own segment
of π (line 17 – line 21).

• Rotate along row (per substep) Send completed to right
neighbor and receive completed for the next sub-step
from left neighbor (line 22).

V. ANALYTIC MODEL OF COMMUNICATION

In addition to the savings in computation, the bottom-
up steps will also reduce the communication volume. We
summarize the communication costs in Table I, where we
assume that the bottom-up approach is used for only sb steps
of the search (out of d potential steps) on a graph with m
edges and n vertices, distributed on a pr × pc processor grid.

We first present a simple model that counts the number of
words sent and received during the entire search. To represent
the compression provided by bitmaps, we divide the number
of words by 64 since we use 64-bit identifiers. To further
simplify the expressions, we assume (pc − 1)/(pc) ≈ 1 and
ignore transfers that send only a word (communicating sizes).
We calculate the data volume for the entire search, and assume
that every vertex and every edge is part of the connected
component.

The parallel 2D top-down approach transfers data for two
operations: gathering the frontier (expand) and sending edges
(fold). Every vertex is part of the frontier exactly once, so
communicating the frontier sends n words for the transpose
and npr words for the allgather along the column. Every edge
is examined once, however sending it requires sending both
endpoints (two words). Since the graph is undirected, each
edge is examined from both sides, which results in sending

4m words. In total, the number of words a search with the
top-down approach sends is approximately:

wt = 4m+ n(pr + 1)

Since the bottom-up approach is most useful when com-
bined with the top-down approach, we assume the bottom-
up approach is used for only sb steps of the search, but it
still processes the entire graph. There are three types of com-
munication that make up the bottom-up approach: gathering
the frontier, communicating completed vertices, and sending
parent updates. Gathering the frontier is the same combination
of a transpose and an allgather along a column like the top-
down approach except a dense bitmap is used instead of a
sparse vector. Since the bottom-up approach uses a dense data
structure and it sends the bitmap every step it is run, it sends
sbn(1 + pr)/64 words to gather the frontier. To rotate the
bitmaps for completed , it transfers the state of every vertex
once per sub-step, and since there are pc sub-steps, an entire
search sends sbnpc/64 words. Each parent update consists of
a pair of words (child, parent), so in total sending the parent
updates requires 2n words. All combined, the number of words
the bottom-up approach sends is approximately:

wb = n(
sb(pr + pc + 1)

64
+ 2)

To see the reduction in data volume, we take the ratio of
the number of words the top-down approach sends (wt) to the
number of words the bottom-up approach will send (wb), as
shown in Equation 2. We assume our 2D partitioning is square
(pr = pc) since that will send the least amount of data for both
approaches. Furthermore, we assume the degree of the target
graph is k = m/n.

wt

wb
=

pc + 4k + 1

sb(2pc + 1)/64 + 2
(2)

For a typical value of sb (3 or 4), by inspection the
ratio will always be greater than 1; implying the bottom-
up approach sends less data. Both approaches suffer when
scaling up the number of processors, since it increases the
communication volume. This is not unique to either approach
presented, and this leads to sub-linear speedups for distributed
BFS implementations. This ratio also demonstrates that the
higher the degree is, the larger the gain for the bottom-up
approach relative to the top-down approach is. Substituting
typical values (k = 16 and pc = 128), the bottom-up approach
needs to take sb ≈ 47.6 steps before it sends as much data
as the top-down approach. A typical sb for the low-diameter
graphs examined in this work is 3 or 4, so the bottom-up
approach typically moves an order of magnitude less data.
This is intuitive, since to first order, the amount of data the top-
down approach sends is proportional to the number of edges,
while for the bottom-up approach, it is proportional to the
number of vertices.

The critical path of communication is also important to
consider. The bottom-up approach sends less data, but it could
be potentially bottlenecked by latency. Each step of the top-
down algorithm has a constant number of communication

rounds, but each step of the bottom-up approach has Θ(pc)
rounds which could be significant depending on the network
latencies.

The types of communication primitives used is another
important factor since primitives with more communicat-
ing parties may have higher synchronization penalties. The
communication primitives used by top-down involve more
participants, as it uses: point-to-point (transpose to set up
expand), allgather along columns (expand), and all-to-all along
rows (fold). The bottom-up approach uses point-to-point for
all communication except for the allgather along columns for
gathering the frontier.

VI. COMBINING BOTTOM-UP WITH TOP-DOWN

The bottom-up BFS has the potential to skip many edges
to accelerate the search as a whole, but it will not always be
more efficient than the top-down approach. Specifically, the
bottom-up approach is typically only more efficient when the
frontier is large because it increases the probability of finding a
valid parent. This leads to the direction-optimizing approach, a
hybrid design of the top-down approach powering the search at
the beginning and end, and the bottom-up approach processing
the majority of the edges during only a few steps in the
middle when the frontier is at or near its largest. We leverage
the insight gained from prior work [5] [8] to choose when
to switch between the two BFS techniques at a step (depth)
granularity.

We use the number of edges in the frontier (mf) to decide
when to switch from top-down to bottom-up and the number
of vertices in the frontier (nf) to know when to switch from
bottom-up back to top-down. Both the computation and the
communication costs per step of the top-down approach is
proportional to the number of edges in the frontier, hence
the steps when the frontier is the largest consume the ma-
jority of the runtime. Conversely, the bottom-up approach is
advantageous during these large steps, so using the number
of edges in the frontier is appropriate to determine when
the frontier is sufficiently large to switch to the bottom-up
approach. Using the heuristic as well as the tuning results
from prior work [5] [8], we switch from top-down to bottom-
up when:

mf >
m

10

This can be interpreted as once the frontier encompasses at
least one tenth of the edges, the bottom-up approach is likely
to be advantageous. Even though the probability of finding a
parent (and thus stopping early) may continue to be high as the
size of the frontier ramps down in later steps, there is sufficient
fixed overhead for a step of the bottom-up approach to make
it worthwhile to switch back to the top-down approach. Using
the results from prior work, where k is the degree, we switch
back to top-down when:

nf <
n

14k

The degree term in the denominator ensures that higher-degree
graphs switch back later to top-down since an abundance of
edges will continue to help the bottom-up approach.

The switch to bottom-up uses the number of edges in the
frontier while the switch back to top-down uses the number
of vertices in the frontier because the apex of the number of
edges in the frontier is often a step or two before the apex of
the number of vertices in the frontier. For scale-free graphs,
the high-degree vertices tend to be reached in the early steps
since their many edges make them close to much of the graph.
In the steps that follow the apex of the number of edges in
the frontier, the number of vertices in the frontier becomes
its largest as it contains the high-degree vertices’ many low-
degree neighbors. Since edges are the critical performance
predictor, the number of edges in the frontier is used to guide
the important switch to bottom-up. Although the number of
edges in the frontier could be used to detect when to switch
back top-down, it is unnecessary to compute since the number
of vertices in the frontier will suffice. Although the control
heuristic allows for arbitrary patterns of switches, for each
search on all of the graphs studied, the frontier size has the
same shape of continuously increasing and then continuously
decreasing [5] [8] [9].

To compute the number of edges in the frontier, we sum
the degrees of all the vertices in the frontier. An undirected
edge with both endpoints in the frontier will be counted twice
by this method, but this is appropriate since the top-down
approach will check the edge from both sides too. When
loading in the graph, we calculate the degree for each vertex
and store that in a dense distributed vector. Thus, to calculate
the number of edges in the frontier, we take the dot product
of the degree vector with the frontier.

The transition between different BFS approaches is not only
a change in control, but it also requires some data struc-
ture conversion. The bottom-up approach makes use of two
bitmaps (completed and frontier) that need to be generated
and distributed. Generating completed can be simply accom-
plished by setting bits to one whenever the corresponding
index has been visited (parent [i] 6= −1). Converting the
frontier is similar, as it involves setting a bit in the bitmap
frontier for every index in the sparse frontier used by the top-
down approach. For the switch back to top-down, the bitmap
frontier is converted back to a sparse list. Another challenge
of combining top-down and bottom-up search is that top-
down requires fast access to outgoing edges while bottom-
up requires fast access to incoming edges. We keep both AT

and A in memory to facilitate fast switching between search
directions. The alternative of transposing the matrix during
execution proved to be more expensive than the cost of BFS
itself. A symmetrical data structure that allows fast access to
both rows (outgoing edges) and columns (incoming edges)
without increasing the storage costs would be beneficial and
is considered in future work.

Hopper Jaguar
Operator NERSC ORNL
Supercomputer Model Cray XE6 Cray XK6
Interconnect Cray Gemini Cray Gemini
Processor Model AMD Opteron 6172 AMD Opteron 6274
Processor Architecture Magny-Cours Interlagos
Processor Clockrate 2.1 GHz 2.2 GHz
Sockets/node 2 1
Cores/socket 12 16
L1 Cache/socket 12×64 KB 16×16 KB
L2 Cache/socket 12×512 KB 8×2 MB
L3 Cache/socket 2×6 MB 2×8 MB
Memory/node 32 GB 32 GB

TABLE II
SYSTEM SPECIFICATIONS

VII. EXPERIMENTAL SETTINGS

We run experiments on two major supercomputers: Hopper
and Jaguar (Table II). We benchmark flat (1 thread per
process) MPI versions of both the conventional top-down
algorithm and the direction-optimizing algorithm for any given
concurrency and setting. The additional benefits of using in-
node multithreaded has been demonstrated before [6], and its
benefits are orthogonal.

We use synthetic graphs based on the R-MAT random graph
model [10], as well as a large-scale real world graph that
represents the structure of the Twitter social network [11],
which has 61.5 million vertices and 1.47 billion edges. The
Twitter graph is anonymized to respect privacy. R-MAT is a
recursive graph generator that creates networks with skewed
degree distributions and a very low graph diameter. R-MAT
graphs make for interesting test instances because traversal
load-balancing is non-trivial due to the skewed degree distri-
bution, the lack of good graph separators, and common vertex
relabeling strategies are also expected to have a minimal effect
on cache performance. We use undirected graphs for all our
experiments.

We set the R-MAT parameters a, b, c, and d to
0.59, 0.19, 0.19, 0.05 respectively and set the degree to 16
unless otherwise stated. These parameters are identical to the
ones used for generating synthetic instances in the Graph500
BFS benchmark [12]. Like Graph500, to compactly describe
the size of a graph, we use the scale variable to indicate the
graph has 2scale vertices.

When reporting numbers, we use the performance rate
TEPS, which stands for Traversed Edges Per Second. Since
the bottom-up approach may skip many edges, we compute
the TEPS performance measure consistently by dividing the
number of input edges by the runtime. During preprocessing,
we prune duplicate edges and vertices with no edges from
the graph. For all of our timings, we do 16 to 64 BFS runs
from randomly selected distinct starting vertices and report the
harmonic mean.

Both of our implementations use the Combinatorial
BLAS [13] infrastructure so that their input graph data struc-
tures, processor grid topology, etc. are the same. Our baseline
comparisons are against a previously published top-down im-

30
(2916)

31
(5776)

32
(11664)

33
(23104)

34
(46656)

Scale
(Processors)

0

50

100

150

200
S

ea
rc

h
R

at
e

(G
TE

P
S

)

Direction-optimizing
Top-down

Fig. 2. R-MAT weak scaling on Jaguar

plementation [6] that is further improved and tuned for Hopper.
We only run experiments on processor counts that are perfect
squares because the Combinatorial BLAS internally requires
a square processor grid. We use Cray’s MPI implementation,
which is based on MPICH2, and compile our code with GCC
C++ compiler version 4.6.2 with -O2 flag.

VIII. EXPERIMENTAL RESULTS

In this section, we first present results using the synthetically
generated R-MAT graphs on Jaguar. We then provide a com-
parison of Hopper to Jaguar and show that our algorithm scales
similarly on both architectures. Additionally, we examine the
impact of graph size and degree on performance. We present
results using the real-world Twitter dataset [11]. Finally, we
consider the potential for the performance advantage of our
algorithm to dramatically reduce cost.

Weak scaling results from Jaguar demonstrate the perfor-
mance improvement the direction-optimizing implementation
gets from the addition of the bottom-up approach (Figure 2).
At scale=30 the improvement is 6.5×, but as the graph and
system size grow, the ratio of improvements extends to 7.9×.

The same implementation also has great weak scaling
speedup on Hopper (Figure 3), and it reaches 243 GTEPS
at scale=35. At these cluster and problem sizes, there is no
slowdown in performance improvement, indicating a larger
allotment on these systems could produce even faster search
rates on larger problems.

Strong scaling results from Jaguar show promising speedups
for the direction-optimizing approach, but it does have some
slowdown for a cluster sufficiently large relative to the graph.
This behavior is shown on two scales of graph (Figure 4). For
both BFS approaches (top-down and bottom-up), increasing
the cluster size does have the benefit of reducing the amount
of computation per processor, but it comes at the cost of
increased communication. The top-down approach does more
computation than the bottom-up approach, so this increase

212 213 214 215 216

Processors

0

50

100

150

200

250

S
ea

rc
h

R
at

e
(G

TE
P

S
)

Hopper
Jaguar

Fig. 3. R-MAT weak scaling comparison between Jaguar and Hopper.
Jaguar starts with 2916 processors and Hopper starts with 3600 processors
for scale=30 and the number of processors doubles for each increase in scale.

2916 5776 11664 23104 46656
Processors

0

20

40

60

80

100

120

S
ea

rc
h

R
at

e
(G

TE
P

S
)

Direction-optimizing (32)
Direction-optimizing (30)

Top-down (32)
Top-down (30)

Fig. 4. R-MAT strong scaling on Jaguar for graphs of scale=30 and scale=32

in communication is offset by the decrease in computation,
producing a net speedup. The bottom-up approach derives
some benefit from a larger cluster, but after a certain point the
communication overhead hurts its overall performance. Even
though it sends less data than the top-down approach, it also
has less computation to hide it with. In spite of this slowdown,
the direction-optimizing approach still maintains a consider-
able advantage over the purely top-down implementation.

Scaling the graph size for a fixed cluster size shows the
tradeoff between computation and communication for the
bottom-up approach more clearly. Figure 6 presents a break-
down of where the runtime is spent on the direction-optimizing
searches of Figure 5. The number of communication steps for
the bottom-up approach is only proportional to the square root
of the cluster size, so increasing the size of the input graph

30 31 32 33
Scale

50

60

70

80

90

100

110

120

130

140
S

ea
rc

h
R

at
e

(G
TE

P
S

)

Fig. 5. R-MAT graph size scaled on Jaguar (23104 processors) with direction-
optimizing BFS

will only increase the amount of data transmitted, but not how
many steps it is sent in. When the graph is too small, there is
little data to compute and little data to send during each sub-
step, so it is susceptible to load imbalance. The load imbalance
does not stem from the 2D decomposition itself (the number
of nonzeros in any Aij is not more than 5% higher than the
average), but it is typically due to variation in the number
of parents discovered per processor. A larger graph gets better
overall performance since there is more to do each sub-step so
more of the time is spent doing useful work. Another cause of
the load imbalance is the blocking nature of the send-recv calls
of the bottom-up steps. Even when the subgraphs distributed
to individual processors are perfectly load balanced, it does
not translate into a run-time load balance because depending
on the starting vertex, each processor might have more work
to do than its row-wise neighbor.

To study the sensitivity of the direction-optimizing ap-
proach’s performance to graph properties, we vary the degree
while keeping the number of edges constant (Figure 7). For
the top-down approach, this does not change the amount of
computation since it is proportional to the number of edges
and they are kept constant. For the bottom-up approach,
increasing the degree actually decreases the relative amount
of computation since it increases the probability of finding a
parent and stopping early. As a side effect, lower degree runs
scale better with increasing number of processors because they
do more computation since they are finding more parents. The
communication time decreases for increased degree since there
are fewer vertices to transmit. This decrease in communication
volume is shown by the model presented in Section V. Exam-
ining the results of Figure 7 reveals that the TEPS performance
rate approximately goes up proportional to the square root of
the increase in degree, i.e. the direction-optimizing algorithm
runs twice as fast on graphs with degree 4k versus graphs with
degree k when the number of edges is held constant.

As a sanity check, we run our implementations on the Twit-
ter dataset [11] to demonstrate it works well on other scale-

30 31 32 33
Scale

0

20%

40%

60%

80%

 100%

Load Imbalance
BU Communication
BU Computation

TD Communication
TD Computation

Fig. 6. Breakdown of fraction of direction-optimizing BFS runtime on Jaguar
(23104 processors) on R-MAT graph size scaled (same runs as Figure 5). BU
stands for bottom-up and TD for top-down.

4
(32)

16
(30)

64
(28)

Degree
(Scale)

20

40

60

80

100

120

140

S
ea

rc
h

R
at

e
(G

TE
P

S
)

11664 Processors
 5776 Processors
 2916 Processors

Fig. 7. R-MAT graph with 16B edges with direction-optimizing BFS on
Jaguar. Degree varied by changing number of vertices (scale).

free low-diameter graphs (Figure 8). Because the real-world
graph is much smaller than the other graphs in this study,
and the direction-optimizing approach already takes only 0.08
seconds to do a full BFS on this graph with 1440 cores, its
performance does not increase any further by increasing core
counts. The direction-optimizing algorithm, however, provides
an economic response to the inverse question “how many core
are needed to traverse this data set in less than 0.1 seconds?”.

Our direction-optimizing approach provides a substantial
performance advantage over the top-down approach, but this
translates into a far larger cost advantage. Distributed BFS
algorithms have sub-linear speedups in general [6][7][14], so

27 28 29 210 211 212 213

Processors

0

2

4

6

8

10

12

14

16

18
S

ea
rc

h
R

at
e

(G
TE

P
S

)

Direction-optimizing Top-down

Fig. 8. Twitter dataset [11] on Jaguar

for the top-down approach to match the direction-optimizing
approach’s performance will require a super-linear number of
cores. Under weak scaling (Figure 2), if the performance of
the top-down approach continues on the same trajectory, it
will require a scale=36 graph and approximately 185 thousand
cores to match the performance of the scale=30 point of the
direction-optimizing approach (a 60× increase in core count).
The core count reduction for strong scaling (Figure 4) up
to when the direction-optimizing approach peaks also gets
dramatic reductions of similar or greater magnitude. Due
to this substantial cost advantage, not using the direction-
optimizing approach on a low-diameter graph could be a very
expensive mistake.

IX. RELATED WORK

Parallel BFS is a widely studied kernel, both in theory
and in practice. Algorithmically, the parallelism for a graph
with m edges and D diameter is limited to O(m/D), so a
top-down level-synchronous approach (reviewed in Section II)
is most suitable for low-diameter graphs. For large diameter
graphs, the span (critical path) becomes too long and fre-
quent synchronizations limit the parallel performance. Ullman
and Yannakakis [15] present an alternative algorithm that is
more suitable for large diameter graphs. Their algorithm does
parallel path-limited searches from a subset of vertices and
combines the path-limited BFS trees by using an all-pairs
shortest-paths computation.

Agarwal et al. [16] provide a shared-memory paralleliza-
tion of the queue-based algorithm on multicore architectures.
Leiserson and Schardl [17] provides a bag implementation
to store the frontiers, relying on hyperobjects (reducers) in-
stead of atomics. By designing an “adaptive barrier,” Xia
and Prasanna [18] reduce synchronization costs of BFS on
multicore architectures. Hong et al. [9] use the “read-array”
approach to get better memory locality and they change BFS
approaches on a level granularity. The majority of these efforts

focus on minimizing cache traffic and avoiding expensive
atomic operations as much as possible.

On Graphical Processing Units (GPUs), Harish and
Narayanan [19] give the first implementations of various graph
algorithms, including BFS. Hong et al. [20] and Merrill et
al. [21] both focus on reducing thread divergence within a
warp. Gharaibeh et al. [22] describes a processing engine
called Totem that simplifies offloading graph algorithms like
BFS to GPU accelerators.

On massively multithreaded systems, Bader and Mad-
duri [23] introduce a fine-grained implementation on the
Cray MTA-2 system using the level synchronous approach,
achieving good scaling on the 40 processor MTA-2. Mizell
and Maschhoff [24] improve and port this algorithm to the
Cray XMT, the successor to the MTA-2.

On distributed memory, scalable implementations use a two-
dimensional graph decomposition [6] [7], and typically rely on
bulk-synchronous computation using MPI. Other distributed
memory implementations include the threaded 1D approach
using active messages of Edmonds et al. [25], and the parti-
tioned global address space (PGAS) implementation of Cong
et al. [26]. Pierce et al. [27] investigate BFS implementations,
among other graph algorithms, on semi-external memory.

In an upcoming publication, Checconi et al. [14] provide a
distributed-memory parallelization of BFS for BlueGene/P and
BlueGene/Q architectures. They use a very low-latency custom
communication layer instead of MPI, and specially optimize
it for undirected graphs as is the case for the Graph500
benchmark. Another innovation of their work is to reduce
communication by maintaining a prefix sum of assigned
vertices, hence avoiding sending multiple parent updates for a
single output vertex.

X. CONCLUSION

We give a new distributed memory parallel direction-
optimizing BFS algorithm that combines the scalable two-
dimensional approach with top-down and novel bottom-up
search steps. We evaluate the new algorithm extensively with
real and synthetically generated graphs of various sizes and
degrees on tens of thousands of cores. The algorithm per-
forms approximately 7× faster than an already scalable top-
down only algorithm that uses the same data distribution and
management of parallelism. Furthermore, this performance
advantage allows the direction-optimizing approach to achieve
the same performance as the top-down approach with more
than an order of magnitude fewer processors. We believe that
the algorithm is amenable to further optimizations and tuning,
which we plan to pursue as future work.

ACKNOWLEDGMENTS

This research used resources of the National Energy Re-
search Scientific Computing Center, which is supported by
the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231. This research also used
resources of the Oak Ridge Leadership Computing Facility

located in the Oak Ridge National Laboratory, which is sup-
ported by the Office of Science of the Department of Energy
under Contract DE-AC05-00OR22725. The second author was
supported in part by the DARPA UHPC program under con-
tract HR0011-10-9-0008, and in part by the Director, Office of
Science, U.S. Department of Energy under Contract No. DE-
AC02-05CH11231. Research was also supported by Microsoft
(Award #024263) and Intel (Award #024894) funding and by
matching funding by U.C. Discovery (Award #DIG07-10227).
Additional support comes from Par Lab affiliates National
Instruments, Nokia, NVIDIA, Oracle, and Samsung.

REFERENCES

[1] R. E. Tarjan, “Depth-first search and linear graph algorithms,” SIAM
Journal on Computing, vol. 1, no. 2, pp. 146–160, Jun. 1972.

[2] W. McLendon III, B. Hendrickson, S. J. Plimpton, and L. Rauchwerger,
“Finding strongly connected components in distributed graphs,” J. Par-
allel Distributed Computing, vol. 65, no. 8, pp. 901–910, Aug. 2005.

[3] D. J. Watts, “Networks, dynamics and the small-world phenomenon,”
American Journal of Sociology, vol. 105, no. 2, pp. 493–527, 1999.

[4] D. S. Bassett and E. Bullmore, “Small-world brain networks,” The
Neuroscientist, vol. 12, no. 6, pp. 512–23, 2006.

[5] S. Beamer, K. Asanović, and D. A. Patterson, “Direction-optimizing
breadth-first search,” Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, 2012.

[6] A. Buluç and K. Madduri, “Parallel breadth-first search on distributed
memory systems,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, 2011.

[7] A. Yoo, E. Chow, K. Henderson, W. McLendon, B. Hendrickson,
and Ü. V. Çatalyürek, “A scalable distributed parallel breadth-first
search algorithm on BlueGene/L,” in Proc. ACM/IEEE Conf. on High
Performance Computing (SC2005), 2005.

[8] S. Beamer, K. Asanović, and D. A. Patterson, “Searching for a parent
instead of fighting over children: A fast breadth-first search imple-
mentation for graph500,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2011-117, 2011.

[9] S. Hong, T. Oguntebi, and K. Olukotun, “Efficient parallel graph
exploration on multi-core CPU and GPU,” Parallel Architectures and
Compilation Techniques (PACT), 2011.

[10] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A recursive model
for graph mining,” in Proc. 4th SIAM Intl. Conf. on Data Mining (SDM).
Orlando, FL: SIAM, Apr. 2004.

[11] H. Kwak, C. Lee, H. Park, and S. Moon, “What is twitter, a social
network or a news media?” International World Wide Web Conference,
2010.

[12] “Graph500 benchmark.” www.graph500.org.
[13] A. Buluç and J. Gilbert, “The Combinatorial BLAS: Design, implemen-

tation, and applications,” International Journal of High Performance
Computing Applications (IJHPCA), vol. 25, no. 4, pp. 496–509, 2011.

[14] F. Checconi, F. Petrini, J. Willcock, A. Lumsdaine, A. R. Choudhury,
and Y. Sabharwal, “Breaking the speed and scalability barriers for
graph exploration on distributed-memory machines,” Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2012.

[15] J. D. Ullman and M. Yannakakis, “High-probability parallel transitive-
closure algorithms,” SIAM J. Comput., vol. 20, no. 1, pp. 100–125, 1991.

[16] V. Agarwal, F. Petrini, D. Pasetto, and D. Bader, “Scalable graph
exploration on multicore processors,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, Nov. 2010.

[17] C. Leiserson and T. Schardl, “A work-efficient parallel breadth-first
search algorithm (or how to cope with the nondeterminism of reducers),”
in Proc. 22nd ACM Symp. on Parallism in Algorithms and Architectures
(SPAA ’10), Jun. 2010, pp. 303–314.

[18] Y. Xia and V. Prasanna, “Topologically adaptive parallel breadth-first
search on multicore processors,” in Proc. 21st Int’l. Conf. on Parallel
and Distributed Computing Systems (PDCS’09), Nov. 2009.

[19] P. Harish and P. Narayanan, “Accelerating large graph algorithms on
the GPU using CUDA,” in Proc. 14th Int’l. Conf. on High-Performance
Computing (HiPC), dec 2007, pp. 197–208.

[20] S. Hong, S. Kim, T. Oguntebi, and K. Olukotun, “Accelerating cuda
graph algorithms at maximum warp,” Symposium on Principles and
Practice of Parallel Programming (PPoPP), 2011.

[21] D. Merrill, M. Garland, and A. Grimshaw, “Scalable GPU graph
traversal,” Principles and Practice of Parallel Programming (PPoPP),
2012.

[22] A. Gharaibeh, L. Beltrão Costa, E. Santos-Neto, and M. Ripeanu,
“A yoke of oxen and a thousand chickens for heavy lifting graph
processing,” in Proceedings of the 21st international conference on
Parallel architectures and compilation techniques, ser. PACT ’12.
New York, NY, USA: ACM, 2012, pp. 345–354. [Online]. Available:
http://doi.acm.org/10.1145/2370816.2370866

[23] D. Bader and K. Madduri, “Designing multithreaded algorithms for
breadth-first search and st-connectivity on the Cray MTA-2,” in Proc.
35th Int’l. Conf. on Parallel Processing (ICPP 2006), Aug. 2006, pp.
523–530.

[24] D. Mizell and K. Maschhoff, “Early experiences with large-scale XMT
systems,” in Proc. Workshop on Multithreaded Architectures and Appli-
cations (MTAAP’09), 2009.

[25] N. Edmonds, J. Willcock, T. Hoefler, and A. Lumsdaine, “Design of
a large-scale hybrid-parallel graph library,” in International Conference
on High Performance Computing, Student Research Symposium, Goa,
India, 2010.

[26] G. Cong, G. Almasi, and V. Saraswat, “Fast PGAS implementation
of distributed graph algorithms,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, Nov. 2010.

[27] R. Pearce, M. Gokhale, and N. Amato, “Multithreaded asynchronous
graph traversal for in-memory and semi-external memory,” in Proceed-
ings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, 2010, pp. 1–11.

